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Abstract

Image rendering maps scene parameters to output pixel values; an-
imation maps motion-control parameters to trajectory values. Be-
cause these mapping functions are usually multidimensional, non-
linear, and discontinuous, finding input parameters that yield desir-
able output values is often a painful process of manual tweaking.
Interactive evolution and inverse design are two general method-
ologies for computer-assisted parameter setting in which the com-
puter plays a prominent role. In this paper we present another such
methodology. Design GalleryTM (DG) interfaces present the user
with the broadest selection, automatically generated and organized,
of perceptually different graphics or animations that can be pro-
duced by varying a given input-parameter vector. The principal
technical challenges posed by the DG approach are dispersion, find-
ing a set of input-parameter vectors that optimally disperses the re-
sulting output-value vectors, and arrangement, organizing the re-
sulting graphics for easy and intuitive browsing by the user. We de-
scribe the use of DG interfaces for several parameter-setting prob-
lems: light selection and placement for image rendering, both stan-
dard and image-based; opacity and color transfer-function specifi-
cation for volume rendering; and motion control for particle-system
and articulated-figure animation.

CR Categories: I.2.6 [Artificial Intelligence]: Problem Solving,
Control Methods and Search—heuristic methods; I.3.6 [Computer
Graphics]: Methodology and Techniques—interaction techniques;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Real-
ism.

Keywords: Animation, computer-aided design, image rendering,
lighting, motion synthesis, particle systems, physical modeling, vi-
sualization, volume rendering.

1 Introduction

Parameter tweaking is one of the vexations of computer graphics.
Finding input parameters that yield a desirable output is difficult
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and tedious for many rendering, modeling, and motion-control pro-
cesses. The notion of having the computer assist actively in set-
ting parameters is therefore appealing. One such computer-assisted
methodology is interactive evolution [11, 21, 23]: the computer ex-
plores the space of possible parameter settings, and the user acts
as an objective-function oracle, interactively selecting computer-
suggested alternatives for further exploration. A more automatic
methodology is inverse design, e.g., [10, 12, 14, 19, 22, 25, 27]:
the computer searches for parameter settings that optimize a user-
supplied, mathematically stated objective function.

Unfortunately, there are many interesting and important graphics
processes for which interactive evolution and inverse design are not
very useful. These processes share two common characteristics:

� High computational cost: if the process cannot be computed
in near real time, interactive evolution becomes unusable.

� Unquantifiable output qualities: even though desirable graph-
ics may be readily identified by inspection, it may not be possi-
ble to quantify a priori the qualities that make them desirable.
This lack of a suitable objective function rules out the use of
inverse design.

In this paper we present a third methodology for computer-
assisted parameter setting that is especially applicable to graphics
processes that exhibit one or both of these characteristics. Design
Gallery (DG) interfaces present the user with the broadest selec-
tion, automatically generated and organized, of perceptually differ-
ent graphics or animations that can be produced by varying a given
input-parameter vector. Because the selection is generated automat-
ically, it can be done as a preprocess so that any high computational
costs are hidden from the user. Furthermore, the DG approach re-
quires only a measure of similarity between graphics, which can of-
ten be quantified even when optimality cannot.

A DG system includes several key elements. The input vector is
a list of parameters that control the generation of the output graphic
via a mapping process. The output vector is a list of values that
summarizes the subjectively relevant qualities of the output graphic.
The distance metric on the space of output vectors approximates the
perceptual similarity of the corresponding output graphics. The dis-
persion method is used to find a set of input vectors that map to a
well-distributed set of output vectors, and hence output graphics.
The dispersed graphics are presented to the user through a perceptu-
ally reasonable arrangement method that makes use of the distance
metric. These six elements — input vector, mapping, output vector,
distance metric, dispersion, and arrangement — characterize a DG
system. The creator of a DG system chooses the input vector, out-
put vector, and the distance metric for a specific mapping process.
For particular instances of the process, the computer performs the
dispersion, the mapping of input vectors to output vectors, and the
arrangement of final graphics in a gallery. The end user need only
recognize and select appealing graphics from the gallery.
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We explain and illustrate the use of DGs for several common
parameter-setting problems: light selection and placement for im-
age rendering, both standard and image-based; opacity and color
transfer-function specification for volume rendering; and motion
control for particle-system and articulated-figure animation. Dur-
ing the discussion, we describe the input and output vectors for each
mapping process, and presentvarious methods for dispersion and ar-
rangement that we have used in building DG systems.

2 Light Selection and Placement

Setting lighting parameters is an essential precursor to image ren-
dering. Previous attempts at computer-assisted lighting specifica-
tion have used inverse design. For example, the user can specify the
location of highlights and shadows in the image [15], pixel intensi-
ties [19], or subjective impressions of illumination [10]; the com-
puter then attempts to determine lighting parameters that best meet
the given objectives, using geometric [15] or optimization [10, 19]
techniques. Unfortunately, the formulation of lighting specification
as an inverse problem has some significant drawbacks. High-quality
image rendering (e.g., raytracing or radiosity) is costly; to make the
computer’s search task tractable, the user may have to fix the light
positions [10, 19], thereby grossly limiting the illuminations that can
be considered. A more intrinsic difficulty is that of requiring the
user to quantify a priori the desired illuminative characteristics of
the resulting image. This requirement may be satisfiable in an archi-
tectural context [10], but seems very challenging in a more general
cinematographic context [8]. The most difficult lighting parameters
to set are those relating to light type and placement, so they have
been the focus of our efforts.

2.1 Input and Output Vectors

For the light selection and placement problem, we begin with a
scene model comprising surfaces and viewing parameters. The goal
is to explore different ways of lighting the scene, so the input vector
includes a light position, a light type, and a light direction if needed.
The light position is located somewhere on one of the surfaces dis-
tinguished as a light hook surface by the user. The light type comes
from a user-defined group, and describes attributes of the light: its
basic class (e.g., point, area, or spotlight); whether or not it casts
shadows; its falloff behavior (e.g., none, linear, or quadratic); and
class-specific parameters (e.g., the beam angle of a spotlight). Di-
rectional lights are aimed at randomly chosen points on designated
light target surfaces.

The output vector should be a concise, efficiently computed set
of values that summarizes the perceptual qualities of the final im-
age. Thus, output vectors are based on pixel luminances from sev-
eral low-resolution thumbnail images (32� 25 pixels and smaller).
The luminances at resolution � are weighted by a factor f(�). The
distance metric on the output vector is the standard L

1 (Manhat-
tan) distance. As a result, the distance between output vectors cor-
responding to images q and r is
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where Y �
q (x;y) is the luminance of the pixel at location (x;y) in

image q at resolution �.1

1Since we start with a low-resolution thumbnail, the filtered images of
even lower resolution called for in the expression will be truly tiny. Nev-
ertheless, they do contain useful information: two barely nonoverlapping
narrow-beamspotlights will generate a high (and somewhat misleading) dif-
ference score at the highest resolution, but smaller, more appropriate differ-

2.2 Dispersion

The dispersion phase selects an appropriate subset of input vectors
from a random sample over the input space. Specifically, T lights
are generated at each of H positions distributed uniformly over the
light hook surfaces. This procedure yields a set L of H � T input
vectors. Typical values are H = 500 and T = 8, in which case
jLj = 4000.2 For each input vector in L, thumbnail images are
generated, and the corresponding output vector is determined as de-
scribed above. The dispersion algorithm outlined in Figure 1 then
finds a set I � L with good spread among output vectors. The first

Input:
L, a set of lights and corresponding thumbnail images.

n < jLj, the size of the selected subset.

c, an average-luminance cutoff factor.

Output:
I � L, a set of n dispersed lights and their images.

Procedure:
SELECTION DISPERSE(L;n; c) f

L L n find dims(c;L);
I  ;;
for i 1 to n do f

p score �1;
foreach q 2 L do f

q score 1;
foreach r 2 I do

if image diff(q; r) < q score then
q score image diff(q; r);

if q score > p score then f
p score q score;
p q;

g

g

I  I [ fpg;
L L n fpg;

g

g

Notes:
n denotes set difference.
find dims(c;L) returns those lights in L with average lumi-
nance less than c.
image diff(q; r) returns the value computed by Equation 1.

Figure 1: A selection-based dispersion heuristic.

step is the elimination of lights that dimly illuminate the visible part
of the scene,because they are obscured or point away from the scene
geometry; these lights are unlikely to be of interest to the user and
can confound the rest of the dispersion process. Thumbnail images
whose average luminance is less than a cutoff factor c are eliminated
from the set L. (Typical useful values of c are in the range 1%–5%
of the maximum luminance value.) The subset I is assembled by
repeatedly adding to I the light in L whose output vector is most
different from its closest match in the nascent I . The size of I is

ence scores at lower resolutions because the beams will overlap in the lower-
resolution images. The effect of the weighting function f(�) is subtle, but
we have found it preferable to weight higher-resolution images slightly more
than lower-resolution ones.

2We picked these numbers to allow overnight batch processing of the en-
tire DG process for one scene on a single MIPS R10000 processor.
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Figure 2: User-interface map.

determined by the interface, as described below; jIj = 584 for the
examples we discuss in the paper.

2.3 Arrangement

We would like the set of lights I to be large, so that the user will
have many complementary lights from which to choose. However,
the greater the size of I , the more difficult it will be for the user
to browse the lights effectively. We accommodate these contradic-
tory requirements by arranging the set I in a fully balanced hier-
archy in which lights that produce similar illumination effects are
grouped together. We accomplish this goal of the arrangementphase
by graph partitioning. A complete graph is formed in which the ver-
tices correspond to the lights in I , and edge costs are given by the in-
verse of the distance metric used in the dispersion phase. An optimal
w-way partition of this graph would comprisew disjoint vertex sub-
sets of equal cardinality such that the cost of the cut set, the total cost
of all edges that connect vertices in different subsets, is minimized.
Optimal graph partitioning is NP-hard [4], but many good heuristics
have been developed for this problem [1]. Our partitioning code is
based on an algorithm and software developed by Karypis and Ku-
mar [9]. Once the initial w-way partition is formed, representative
lights for each partition are selected, and installed in the hierarchy.
The partitioned subsets, minus their representative vertices, are then
processed recursively until a hierarchy with branching factorw and
height h is completed.

The values for w and h are dictated by the user interface, whose
structure is depicted in Figure 2, and actual examples of which are
shown in Figures 9–11. For each light in the final set I , medium-size
(128�100 pixels) and full-size (512�400 pixels) images are gen-
erated for use in the interface. The user is presented with a row of
eight images that serve as the first level of the light hierarchy. Click-
ing on one of these images causes its eight children in the hierarchy
to be presented in the next row of images. The third and final level
in the hierarchy is accessedby clicking on an image from the second
row. Thus w = 8 and h = 3. In turn, these parameters determine
the cardinality of I: jIj =

Ph

j=1
w

j = 584. This particular inter-
face provides additional application-specific functionality that ex-
ploits the additive nature of light [6]. Images can be dragged to the
palette, where light intensity and temperature can be varied interac-
tively. Multiple images are composited to form a full-size image in
the lower left.

2.4 Results

The DG in Figure 9 contains a scene inspired by an example from
[8]. The floor, ceiling, and all four walls (only the rear one is visi-
ble) were designated light-hook surfaces. The surfaces comprising
the figures were designated light-target surfaces, as was the back
wall. The 584 lights in the gallery were selected from 5,000 ran-
domly generated lights in the dispersion phase. The cost of com-
puting this and the other light-selection-and-placement DGs shown
here was dominated by the cost of raytracing the 584 full-size im-
ages used in the display, which took approximately five hours on a
MIPS R10000 processor.

Figure 10 contains a scene with richer geometry. The ceiling, and
the area around the base of the statue were designated light-hook
surfaces. The surfaces of the two heads, the doors, the tree, and
the statue were designated light-target surfaces. The gallery lights
were selected from 3,000 randomly generated lights in the disper-
sion phase.

Finally, Figure 11 shows a DG for synthetic lighting of a pho-
tograph (inset at lower right). A point- and line-based 3D model
is extracted from a triplet of scene images, each taken from a dif-
ferent viewpoint. This reconstruction process is completely auto-
matic, as described in [2]. Points and lines are then aggregated
semi-automatically into planes. An illumination of the final recov-
ered model is used to modulate intensity in one of the original pho-
tographs.

3 Opacity and Color Transfer Functions
for Volume Rendering

Choosing the opacity and color transfer functions for volume ren-
dering is another tedious and difficult manual task amenable to a DG
approach.3 We developed DG interfaces for two data sets: the simu-
lated electron density of a protein, and a CT scan of a human pelvis.

3.1 Input and Output Vectors

The protein data set contains values in the interval [0; 255]. The
opacity transfer function over this domain is parameterized by a
polyline with eight control points, for a total of 16 values. The poly-
line is low-pass filtered before it is used. The color transfer function
is parameterized by five values that segment the data into six sub-
ranges, which are arbitrarily assigned the colors red, yellow, green,
cyan, blue, and magenta. Thus color is being used only to iden-
tify subranges of the data, and not to convey any quantitative rela-
tions among the data. Figure 3 illustrates a sample opacity and color
transfer function. The complete input vector comprises 23 parame-
ters.

For the scene-lighting DG, the output vector contains approxi-
mately 850 weighted pixel luminances. This kind of resolution is
necessarybecause lights can cause completely local illumination ef-
fects in a synthetically rendered image, effects that should be rep-
resentable in the output vector. In comparison, changes to transfer
functions will generally affect many pixels throughout a volume-
rendered image. We can take advantage of this homogeneity by in-
cluding only a handful of pixels in the output vector. Currently we
use eight pixels, selected manually for each data set. Representing
all of their YUV values requires 24 values in the output vector, and
standard Euclidean distance is used as the output-space metric. Dis-
persion on the basis of eight pixels from different parts of the image
producesexcellentdispersion of complete images at a much reduced
computational cost.

3The application of both interactive evolution and inverse design to this
problem is the subject of [7].



Figure 3: Pop-up display depicting transfer functions.

3.2 Dispersion

The dispersion heuristic in Figure 1 works by distilling a set of ran-
domly generated input vectors down to a well-dispersed subset. Al-
though simple, this method has the drawback of not utilizing what is
learned via random sampling about the mapping from input to out-
put vectors. In contrast, the dispersion heuristic in Figure 4 uses an
evolutionary strategy that adapts its sampling over time in response
to what it implicitly learns, and consequently performs much bet-
ter. It starts with an initial set of random input vectors. These vec-
tors are then perturbed randomly. Perturbed vectors are substituted
for existing vectors in the set if the substitution improves dispersion.
The key notion of dispersion used is nearest-neighbordistance in the
space of output vectors.

3.3 Arrangement

The arrangement method based on graph partitioning that is pre-
sented in x2.3 results in a simple and easy-to-use interface. Unfor-
tunately, sometimes the partition contains anomalies, e.g., dissimi-
lar lights placed in the same subset of the partition. This problem is
due to limitations of the partitioning method (no heuristic partition-
ing strategy guarantees an optimal partition), and to the structure of
the set of output vectors, which may not map well to any regular hi-
erarchical partition.

For the volume-rendering application, we used an alternative ar-
rangement method that eschews a partition-based or hierarchical
framework and instead illustrates the structure of the set of output
vectors graphically in a 2D layout. An interface for this arrange-
ment method is shown in Figure 5. A thumbnail, which in this case
is a small, low-resolution volume-rendered image, is generated for
each final output vector. The thumbnails are arranged in the cen-
ter display panel, in a manner that correlates the distance between
thumbnails with the distance between the associated output vectors.
The thumbnail display panel can be panned and zoomed. Selecting
a thumbnail brings up a full-size image, which can then be moved to
the surrounding image gallery. Mousing on an image in the gallery
highlights its associated thumbnail, and vice versa.

Thumbnail layout is accomplished using a multidimensional
scaling (MDS) [3] method due to Torgerson [24].4 Given a matrix of
distances between points, MDS procedures compute an embedding

4The use of more sophisticated MDS techniques for arranging a database
of images is being investigated by Rubner et al. [18].

Input:
A random set of input vectors, I , and their corresponding out-
put vectors, O. jIj= jOj = n.

A trial count, t.

Output:
Modified sets of input and output vectors, I and O.

Procedure:
EVOLUTION DISPERSE(I;O; t) f

for i 1 to t do f
j  rand int(1; n);
u perturb(I[j]; i);
map(u; v);
k  worst index(O);
if is better(v;O[k];O) then f

I[k] u;
O[k] v;

g

else if is better(v;O[j];O) then f
I[j] u;
O[j] v;

g

g

g

Notes:
rand int(1; n) returns a random integer in the range [1; n].

perturb(I[j]; i) returns a copy of I[j] in which all the ele-
ments have been perturbed. The magnitude of the perturba-
tions is inversely proportional to i.

map(u; v) maps input vector u to output vector v using an
application-specific mapping process.
worst index(O) returns the index of the output vector in O

with minimum nearest-neighbordistance. Ties are broken us-
ing the average distance to all other vectors inO.

is better(v;O[k];O) returns true if the nearest neighbor to v
in O n fO[k]g is further away than the nearest neighbor to
O[k] in O. Ties are broken using average distance to all other
vectors in the relevant set.

Figure 4: An evolutionary dispersion heuristic.

of the points in a low-dimensional Euclidean space (2D in our case)
such that the interpoint distances in the embedding closely match
those in the given matrix. Torgerson’s “classical scaling” method,
although simpler and less general than iterative methods, is fast and
robust. When the interpoint distances come from an embedding
of the points in a high-dimensional Euclidean space (which is true
for the applications we discuss here, although it need not be true in
general), classical scaling is equivalent to an efficient technique for
computing a principal-component analysis of the points [5, 13].

The layouts computed by classical scaling are not without
anomalies — as we are using it, this MDS method is a projection
from a high-dimensional space onto a 2D space, which cannot be
done without loss of information — but they do reflect the under-
lying structure of the output vectors well enough to allow effective
browsing. One important practical detail: since full-size versions
of all the images returned by the dispersion procedure must be ren-
dered anyway, it is convenient and better to compute distances from
these full-size images in the arrangement phase, instead of from the
eight pixels used in the dispersion phase.
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Figure 5: A more flexible user interface.

3.4 Results

Figure 12 illustrates the DG for the volume rendering of the pro-
tein data set. The dispersion procedure returned 256 dispersed in-
put and output vectors. A selection of images is shown in the sur-
rounding image galleries. The lines that connect images with their
thumbnails give some indication of how images congregate in the
thumbnail display. (During interactive use the association between
thumbnails and images is done preferably by dynamic highlighting,
as described above.) Figure 3 shows the result of clicking on one
of the images in the image gallery: the corresponding opacity and
color transfer functions are depicted in a pop-up window, allowing
the user to see how image and data relate.

The performance of the dispersion heuristic from this experi-
ment is documented in Figure 6; this data is representative of all the
DG experiments that use the evolutionary dispersion heuristic. The
curves show how two values, the minimum and average nearest-
neighbor distances in the set of output vectors, increase over time.
Improvement is rapid at first: the minimum and average nearest-
neighborhood distances in the initial random set are 184 and 7,789,
respectively. However, the rate of improvement drops quickly. Al-
though we used a trial count of t = 2; 000; 000 (see Figure 4), it is
clear that relatively little improvement occurred after t = 500; 000.
To reach this point requires 8� 500; 000 = 4; 000; 000 raycast op-
erations and takes less than 40 minutes on a single MIPS R10000
processor. This duration is roughly one-sixth of that needed to ren-
der the 256 full-size images (300 � 300 pixels) for the DG.

A second volume-rendering experiment was performed using a
computed tomography (CT) data set for a human pelvis. These
data values are presegmented into four disjoint subranges, one each
for air, fat, muscle, and bone. The input vector specifies the y-
coordinates of 12 opacity control points; the x-coordinates are held
fixed. The input vector does not specify a color transfer function,
since standard colors are used for the different tissue types. The out-
put vector, distance metric, dispersion, and arrangement were iden-
tical to the protein-rendering experiment. Figure 13 illustrates the
DG for the volume rendering of the pelvis data set.

4 Animation Applications

Motion control in animation involves extensive parameter tuning
because the mapping from input parameters to graphical output is
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Figure 7: Articulated linkages.

nonintuitive, unpredictable, and costly to compute.5 For these rea-
sons, motion control is very amenable to a DG approach. Build-
ing a DG interface for animation is similar to building one for still
images (we reuse the dispersion and arrangement code from x3 vir-
tually without change); the major differences are in computing the
output-vector components. We now discuss three DG systems for
animation tasks, focusing on this latter issue.

4.1 2D Double Pendulum

The 2D double pendulum is a simple dynamic system with rich be-
havior that makes it an ideal test case for parameter-setting method-
ologies.6 A double pendulum consists of an attachment pointh, two
bobs of massesm1 andm2, and two massless rods of lengths r1 and
r2, connected as shown in Figure 7. Our pendulum also includes
motors at the joints at h and m1 that can apply sinusoidal time-
varying torques. The input vector comprises the rod lengths, the bob
masses, the initial angular positions and velocities of the rods, and
the amplitude, frequency, and phase of both sinusoidal torques, for
a total of 14 parameters.

Choosing a suitable output vector proved to be the most difficult
part of the DG process for the double pendulum, as well as for the
other motion-control applications; several rounds of experimenta-
tion were needed (see x5 for more details). The output vector must

5Both interactive evolution [26] and inverse design [12, 14, 22, 25, 27]
have been applied previously to motion control.

6Even without the application of external torques at its joints, the 2D dou-
ble pendulum exhibits chaotic behavior [20].



capture the behavior of the system over time. For the double pen-
dulum, the output vector has 12 parameters: the differences in rod
lengths and bob masses, the average Cartesian coordinates of each
bob, and logarithms of the average angular velocity, the number of
velocity reversals, and the number of revolutions for each rod. Eu-
clidean distance is used as the distance metric on this output space.

The mapping from input vector to output vector is accomplished
by dynamically simulating 20 seconds of the pendulum’s motion,
and using the algorithm in Figure 4 for dispersion. Arrangement is
accomplished using the MDS layout method of x3.3. The displayed
thumbnails are static images of the final state of the pendulum, along
with a trail of the lower bob over the final few seconds. We found
that these images give enough clues about the full animation to en-
able effective browsing. Thumbnails can be dragged into gallery
slots, all of which can be animated simultaneously by clicking on
any occupied slot.

Figure 14 shows the DG for the double pendulum. As before, the
overlaid lines show where animations in the gallery are located in
the thumbnail display. The plateau in nearest-neighbor distance is
reached after 170; 000 dispersion iterations, which take 6.5 hours
on a single MIPS R10000 processor.

4.2 3D Hopper Dog

The previous DG is useful in finding and understanding the full
range of motions possible for the pendulum under a given control
regime. However, complete generality is not always a useful goal:
the animator may have some preconceived idea of a motion that
needs subtle refinement to add nuance and detail. The 3D hopper
dog, shown in Figure 7, is an articulated linkage with rigid links
connected by rotary joints. It has a head, ears, and tail, and moves
by hopping on its single leg. It has 24 degrees of freedom (DOF).
The hopper dog is actuated by a control system that tries to main-
tain a desired forward velocity and hopping height, as well as de-
sired positions for joints in some of the appendages. The equations
of motion for the system are generated using a commercially avail-
able package[17]; dynamic simulation is used to produce the anima-
tions.

We started with a basic hopping motion, and then used a DG ap-
proach to explore seven input quantities in order to achieve stylistic,
physically attainable gaits. The seven quantities are: the forward
velocity, the hopping height, and the positions of 2-DOF ear joints, a
2-DOF tail joint, and a 1-DOF neck joint. For each of these seven, a
time-varying sinusoid specifies the desired trajectory, with the min-
imum value, maximum value, and frequency specified in the input
vector, which therefore contains 21 values.

In this particular case, the elements of the output vector corre-
spond closely to those of the input vector. The 14-element output
vector contains the averages and variances of the same seven quan-
tities, and is obtained by dynamically simulating 30 seconds of the
hopper dog’s motion. (Output vectors from simulations in which
the hopper dog falls are discarded automatically.) As for the previ-
ous two applications, the output-space distance metric is Euclidean,
and the arrangement method and interface from x3.3 are used. The
hopper-dog DG is illustrated in the video proceedings.

4.3 Particle Systems

Particle systems are useful for modeling a variety of phenomena
such as fire, clouds, water, and explosions [16]. A useful particle-
system editor might have 40 or more parameters that the animator
can set, so achieving desired effects can be tedious. As in the previ-
ous subsection, we use a DG interface to refine an animator’s rough
approximation to a desired animation.

The subject for our experiment is a hypothetical beam weapon
for NASA space shuttles. A first draft was produced by hand using

Figure 8: A still from a particle-system animation.

a regular particle-system editor; a still from midway through the an-
imation is shown in Figure 8. The input vector contains the subsetof
particle-system controls that the animator wishes to have tweaked.
In this example the controls govern: the mean and variance of parti-
cle velocities, particle acceleration, rate of particle production, par-
ticle lifetime, resilience and friction coefficient of collision surfaces,
and perturbation vectors for surface normals. Among the parame-
ters that are held fixed are the origin, average direction, and color of
the beam.

For efficiency reasons, DG output vectors are based on subsam-
pled versions of the final graphic where possible, thereby reducing
computational costs and allowing more of the space to be explored.
For example, static images can be rendered at low resolution (x2 and
x3). The subsampling strategy for the particle animation is to simu-
late only every 500th particle generated during the dispersion phase,
and to examine the state of the particle system at just two distinct
points in time: once midway through the simulation, and once at the
end. The output vector comprises measures of the number of parti-
cles, their average distance from the origin and the individual varia-
tion in this distance, their spread from the average beam, the average
velocity of the entire system, and the individual variation from this
average (we take logs of all of these quantities except for the beam
spread). These six measures are included for each of the two distin-
guished times, resulting in 12 output parameters. Euclidean distance
is the metric on the output space.

Figure 15 shows the DG of variations on the animator’s origi-
nal sketch from Figure 8. The dispersion and arrangement meth-
ods from x3 are used to generate the DG. Each thumbnail is the
midway still from the corresponding animation. (The user can op-
tionally select thumbnails from different stages in the animation.)
As with the double-pendulum DG, thumbnails can be dragged to
gallery slots and animated therein. Also as before, lines connect
animation stills with their associated thumbnails. The dispersion
heuristic ran for t = 100; 000 iterations, at which point it appeared
to reach a plateau. This number of trials took approximately six
hours on a MIPS R10000 processor. Generating the 256 animations
in the DG with their full complement of particles took a little under
five hours on the same processor.

5 Discussion

Table 1 summarizes the DGs described in this paper, in terms of



Application Light selection &
placement

Volume rendering Double pendulum Particle system Hopper dog

Input Vector
Light type,

location, and
direction

Control points for
opacity/color

transfer functions

Pendulum
dimensions, initial
conditions, motor

torques

Animator-specified
subset of particle

control parameters

Desired trajectory
sinusoids

Output Vector Luminances of
thumbnail pixels

YUV values for
eight pixels

Trajectory statistics
(mainly logs of time averages and variances)

Distance Metric Manhattan Euclidean

Mapping Raytracing Volume rendering
2D dynamic
simulation

3D particle
simulation

3D dynamic
simulation

Dispersion
Selection from
random sample

over neighborhood

Evolution from
full random sample

Evolution from random
sample over neighborhood

Arrangement Graph partitioning Multidimensional scaling

Table 1: Summary of Design Gallery experiments.

the six basic elements of a DG system. Some of the variation in this
table is application specific, while the remainder stems from our in-
vestigation of alternative dispersion and arrangement methods. All
of the galleries described in the paper produce a useful variety of
output graphics.

Using a DG for a particular instance of a design problem is fairly
straightforward for the end user. Aside from browsing the final DG,
the user’s only other task may be to loosely focus the dispersion pro-
cess by, for example, selecting suitable light-hook and light-target
surfaces (x2), or by specifying a relevant subset of particle-control
parameters (x4.3). However, creating a DG system for an entire
class of design problems is more difficult. The DG-system creator
is responsible for choosing the structure of the input and output vec-
tors, and the distance metric on the output space. Thus, the creator
needsa better understandingof the design problem than the end user.
Of the creator’s tasks, the simplest is choosing the distance metric:
very standard metrics sufficed for all applications we tried. Choos-
ing the input vector is also straightforward. Even when there are
many possible ways to parameterize the input, our experience is that
choosing an acceptable parameterization is not hard.

The most difficult task of the DG-system creator is devising an
output vector. The first two DGs in Table 1 work on static images. In
these examples, the perceptual similarity between images correlates
well with subsampled image or pixel differences, hence the output
vectors comprise subsampled image and pixel values. An added ad-
vantage is that the ranges of all components of the output vector are
bounded and known. Finding measures that capture the perceptual
qualities of a complete animation is harder. The DG systems for an-
imation tasks required several experiments to get a suitable output
vector, although the process became easier for each successive sys-
tem. Among the lessons learned in developing output vectors for
motion-control problems, the two most important precepts are, with
hindsight, fairly obvious:

� Take the log of quantities that have a large dynamic range. For
many such quantities, e.g., velocity, human ability to resolve
changes in magnitude diminishes as the magnitude increases.
To uniformly sample the perceptual space, one must therefore
sample the lower end of the dynamic range more thoroughly.

� The relative weights of the output-vector parameters matter.
In general, the output-vector parameters should be scaled so

that they each have approximately the same dynamic range,
otherwise only the parameters with the largest ranges will be
dispersed effectively.

What inevitably happened with a poorly chosen output vector was
that the dispersion algorithm found a malicious way to get unfortu-
nate and unexpectedspread in one of the vector coordinates, usually
through a degenerate set of input parameters, e.g., pendulums with
extremely short links and very high rpm’s, and particle systems with
only a few particles, but very high variance in velocity.

In our experiments, we investigated two dispersion methods and
two arrangement methods. The dispersion method of Figure 4 is
more complex, but performs better. However, an advantage of the
simpler method in Figure 1 is that it may be easier to parallelize.
Two arrangement methods were also tried, one based on graph par-
titioning and the other on MDS. Both allowed the user to navi-
gate through the output graphics effectively, and both had their fans
among our group of informal testers. Layout and organizational
anomalies were occasionally evident in both interfaces, but they did
not hinder the user’s ability to peruse the output graphics.

6 Conclusion

Design Gallery interfaces are a useful tool for many applications in
computer graphics that require tuning parameters to achieve desired
effects. The basic DG strategy is to extract from the set of all possi-
ble graphics a subsetwith optimal coverage. A variety of dispersion
and arrangement methods can be used to construct galleries. The
construction phase is typically computationally intensive and occurs
off-line, for example, during an overnight run. After the gallery is
built, the user is able to quickly and easily browse through the space
of output graphics.

Inverse design is one technique for setting parameters, but it is
only feasible when the user can articulate or quantify what is de-
sired. DGs replace this requirement with the much weaker one of
quantifying similarity between graphics. Unlike interactive evolu-
tion, DGs are feasible even when the graphics-generating process
has high computational cost. Finally, DGs are useful even when the
user has absolutely no idea what is desired, but wants to know what
the possibilities are. This is often the first step in the creative design
process.
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Figure 9: A DG for light selection and placement.

Figure 10: Another DG for light selection and placement.



Figure 11: Light selection and placement for synthetic lighting of a photograph.

Figure 12: A DG with different opacity and color transfer functions.



Figure 13: A DG with different opacity transfer functions.

Figure 14: A DG for an actuated 2D double pendulum.



Figure 15: A DG for a particle system.


